Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Proteomics ; : e2300628, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38400697

RESUMO

Botryllus schlosseri, is a model marine invertebrate for studying immunity, regeneration, and stress-induced evolution. Conditions for validating its predicted proteome were optimized using nanoElute® 2 deep-coverage LCMS, revealing up to 4930 protein groups and 20,984 unique peptides per sample. Spectral libraries were generated and filtered to remove interferences, low-quality transitions, and only retain proteins with >3 unique peptides. The resulting DIA assay library enabled label-free quantitation of 3426 protein groups represented by 22,593 unique peptides. Quantitative comparisons of single systems from a laboratory-raised with two field-collected populations revealed (1) a more unique proteome in the laboratory-raised population, and (2) proteins with high/low individual variabilities in each population. DNA repair/replication, ion transport, and intracellular signaling processes were distinct in laboratory-cultured colonies. Spliceosome and Wnt signaling proteins were the least variable (highly functionally constrained) in all populations. In conclusion, we present the first colonial tunicate's deep quantitative proteome analysis, identifying functional protein clusters associated with laboratory conditions, different habitats, and strong versus relaxed abundance constraints. These results empower research on B. schlosseri with proteomics resources and enable quantitative molecular phenotyping of changes associated with transfer from in situ to ex situ and from in vivo to in vitro culture conditions.

2.
Nat Ecol Evol ; 8(2): 267-281, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38225425

RESUMO

Genetic monitoring of populations currently attracts interest in the context of the Convention on Biological Diversity but needs long-term planning and investments. However, genetic diversity has been largely neglected in biodiversity monitoring, and when addressed, it is treated separately, detached from other conservation issues, such as habitat alteration due to climate change. We report an accounting of efforts to monitor population genetic diversity in Europe (genetic monitoring effort, GME), the evaluation of which can help guide future capacity building and collaboration towards areas most in need of expanded monitoring. Overlaying GME with areas where the ranges of selected species of conservation interest approach current and future climate niche limits helps identify whether GME coincides with anticipated climate change effects on biodiversity. Our analysis suggests that country area, financial resources and conservation policy influence GME, high values of which only partially match species' joint patterns of limits to suitable climatic conditions. Populations at trailing climatic niche margins probably hold genetic diversity that is important for adaptation to changing climate. Our results illuminate the need in Europe for expanded investment in genetic monitoring across climate gradients occupied by focal species, a need arguably greatest in southeastern European countries. This need could be met in part by expanding the European Union's Birds and Habitats Directives to fully address the conservation and monitoring of genetic diversity.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais , Conservação dos Recursos Naturais/métodos , Europa (Continente) , Ecossistema , Variação Genética
3.
Commun Biol ; 7(1): 141, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38297065

RESUMO

To enhance the practice of farmed-coral transplantation, we conducted a trial of an approach called "Reef Carpets" (RC), which draws inspiration from the commercial turf-grass sod in land-based lawn gardening. Three 8.4m2 RCs were established on a sandy seabed, containing preselected combinations of branching corals (Acropora cf. variabilis, Pocillopora damicornis, Stylophora pistillata) with nursery recruited dwellers, and were monitored for 17-months. Corals within RCs grew, supported coral recruitment and offered ecological habitats for coral-associated organisms. While the unstable sediment underneath the RCs increased corals' partial mortalities, corals managed to grow and propagate. The extent of fish and gastropods corallivory varied among the coral species and planulation of Stylophora transplants was significantly higher than same-size natal-colonies. The RCs provided conducive environments for fish/invertebrate communities (183 taxa), and each coral species influenced specifically species-diversity and reef-associated communities. Even dead corals played crucial roles as habitats for reef biota, sustaining >80% of the RCs diversity; hence, they should not be considered automatically as indicators of failure. RCs scaled-up reef restoration and generated, in short periods, new reefs in denuded zones with enhanced biodiversity. Yet, RCs employment on soft-beds could be improved by using more structured artificial frameworks, requiring further research efforts.


Assuntos
Antozoários , Animais , Recifes de Corais , Sobrevivência , Pisos e Cobertura de Pisos , Biodiversidade , Peixes
4.
Biol Rev Camb Philos Soc ; 99(1): 131-176, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37698089

RESUMO

Aquatic invertebrates play a pivotal role in (eco)toxicological assessments because they offer ethical, cost-effective and repeatable testing options. Additionally, their significance in the food chain and their ability to represent diverse aquatic ecosystems make them valuable subjects for (eco)toxicological studies. To ensure consistency and comparability across studies, international (eco)toxicology guidelines have been used to establish standardised methods and protocols for data collection, analysis and interpretation. However, the current standardised protocols primarily focus on a limited number of aquatic invertebrate species, mainly from Arthropoda, Mollusca and Annelida. These protocols are suitable for basic toxicity screening, effectively assessing the immediate and severe effects of toxic substances on organisms. For more comprehensive and ecologically relevant assessments, particularly those addressing long-term effects and ecosystem-wide impacts, we recommended the use of a broader diversity of species, since the present choice of taxa exacerbates the limited scope of basic ecotoxicological studies. This review provides a comprehensive overview of (eco)toxicological studies, focusing on major aquatic invertebrate taxa and how they are used to assess the impact of chemicals in diverse aquatic environments. The present work supports the use of a broad-taxa approach in basic environmental assessments, as it better represents the natural populations inhabiting various ecosystems. Advances in omics and other biochemical and computational techniques make the broad-taxa approach more feasible, enabling mechanistic studies on non-model organisms. By combining these approaches with in vitro techniques together with the broad-taxa approach, researchers can gain insights into less-explored impacts of pollution, such as changes in population diversity, the development of tolerance and transgenerational inheritance of pollution responses, the impact on organism phenotypic plasticity, biological invasion outcomes, social behaviour changes, metabolome changes, regeneration phenomena, disease susceptibility and tissue pathologies. This review also emphasises the need for harmonised data-reporting standards and minimum annotation checklists to ensure that research results are findable, accessible, interoperable and reusable (FAIR), maximising the use and reusability of data. The ultimate goal is to encourage integrated and holistic problem-focused collaboration between diverse scientific disciplines, international standardisation organisations and decision-making bodies, with a focus on transdisciplinary knowledge co-production for the One-Health approach.


Assuntos
Artrópodes , Ecossistema , Animais , Humanos , Invertebrados
5.
Sci Rep ; 13(1): 19076, 2023 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-37925572

RESUMO

Humans have intensively sailed the Mediterranean and European Atlantic waters throughout history, from the upper Paleolithic until today and centuries of human seafaring have established complex coastal and cross-seas navigation networks. Historical literature revealed three major long-lasting maritime routes (eastern, western, northern) with four commencing locations (Alexandria, Venice, Genoa, Gibraltar) and a fourth route (circum-Italian) that connected between them. Due to oceangoing and technological constraints, most voyages were coastal, lasted weeks to months, with extended resting periods, allowing the development of fouling organisms on ship hulls. One of the abiding travellers in maritime routes is the colonial ascidian Botryllus schlosseri already known since the eighteenth century in European and Mediterranean ports. This species, was almost certainly one of the common hull fouling travellers in all trade routes for centuries. Employing COI haplotypes (1008 samples) and microsatellite alleles (995 samples) on colonies sampled from 64 pan-European sites, present-day Botryllus populations in the Mediterranean Sea/European Atlantic revealed significant segregation between all four maritime routes with a conspicuous partition of the northern route. These results reveal that past anthropogenic transports of sedentary marine species throughout millennia long seafaring have left their footprint on contemporary seascape genetics of marine organisms.


Assuntos
Urocordados , Animais , Humanos , Filogenia , Gibraltar , Itália , Mar Mediterrâneo
6.
Mar Drugs ; 21(8)2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37623726

RESUMO

Microalgae and cyanobacteria are diverse groups of organisms with great potential to benefit societies across the world. These organisms are currently used in food, feed, pharmaceutical and cosmetic industries. In addition, a variety of novel compounds are being isolated. Commercial production of photosynthetic microalgae and cyanobacteria requires cultivation on a large scale with high throughput. However, scaling up production from lab-based systems to large-scale systems is a complex and potentially costly endeavor. In this review, we summarise all aspects of large-scale cultivation, including aims of cultivation, species selection, types of cultivation (ponds, photobioreactors, and biofilms), water and nutrient sources, temperature, light and mixing, monitoring, contamination, harvesting strategies, and potential environmental risks. Importantly, we also present practical recommendations and discuss challenges of profitable large-scale systems associated with economical design, effective operation and maintenance, automation, and shortage of experienced phycologists.


Assuntos
Cianobactérias , Microalgas , Automação , Biofilmes , Alimentos
7.
Dev Biol ; 503: 83-94, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37619713

RESUMO

Within the chordates, only some colonial ascidians experience whole body regeneration (WBR), where amputated small colonial fragments containing blood-vessels have the capability to regenerate the entire functional adult zooid within 1-3 weeks. Studying WBR in small colonial fragments taken at different blastogenic stages (the weekly developmental process characteristic to botryllid ascidians) from the ascidian Botrylloides leachii, about half of the fragments were able to complete regeneration (cWBR) three weeks following separation, about half were still in uncomplete, running regeneration (rWBR), and only a small percentage died. cWBR significantly increased in fragments that originated from a late blastogenic stage compared to an early stage. Most B. leachii populations reside in shallow waters, under variable daily natural UV irradiation, and it is of interest to elucidate irradiation effects on development and regeneration. Here, we show that UV-B irradiation resulted in enhanced mortality, with abnormal morphological changes in surviving fragments, yet with non-significant cWBR vs. rWBRs. Further, UV-B irradiation influenced the proportion of blood cells (morula cells, hemoblasts) and of multinucleated cells, a new WBR-associated cell type. At 24-h post-amputation we observed enhanced expression of ß-catenin (a signaling pathway that plays indispensable roles in cell renewal and regeneration), H3 and PCNA in all cell types of non-irradiated as compared to irradiated fragments. These elevated levels were considerably reduced 9-days later. Since WBR is a highly complex phenomenon, the employment of specific experimental conditions, as UV-B irradiation, alongside blastogenesis (the weekly developmental process), elucidates undisclosed facets of this unique biological occurrence such as transient expression of signature genes.


Assuntos
Cordados , Gastrópodes , Urocordados , Animais , Amputação Cirúrgica , Corpo Celular
8.
Cells ; 12(13)2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37443743

RESUMO

The cultivation of marine invertebrate cells in vitro has garnered significant attention due to the availability of diverse cell types and cellular potentialities in comparison to vertebrates and particularly in response to the demand for a multitude of applications. While cells in the colonial urochordate Botryllus schlosseri have a very high potential for omnipotent differentiation, no proliferating cell line has been established in Botryllus, with results indicating that cell divisions cease 24-72 h post initiation. This research assessed how various Botryllus blood cell types respond to in vitro conditions by utilizing five different refinements of cell culture media (TGM1-TGM5). During the initial week of culture, there was a noticeable medium-dependent increase in the proliferation and viability of distinct blood cell types. Within less than one month from initiation, we developed medium-specific primary cultures, a discovery that supports larger efforts to develop cell type-specific cultures. Specific cell types were easily distinguished and classified based on their natural fluorescence properties using confocal microscopy. These results are in agreement with recent advances in marine invertebrate cell cultures, demonstrating the significance of optimized nutrient media for cell culture development and for cell selection.


Assuntos
Urocordados , Animais , Cultura Primária de Células , Vertebrados , Técnicas de Cultura de Células
9.
Front Microbiol ; 14: 1072053, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37323901

RESUMO

Environmental perturbations evoke down-regulation of metabolism in some multicellular organisms, leading to dormancy, or torpor. Colonies of the urochordate Botrylloides leachii enter torpor in response to changes in seawater temperature and may survive for months as small vasculature remnants that lack feeding and reproductive organs but possess torpor-specific microbiota. Upon returning to milder conditions, the colonies rapidly restore their original morphology, cytology and functionality while harboring re-occurring microbiota, a phenomenon that has not been described in detail to date. Here we investigated the stability of B. leachii microbiome and its functionality in active and dormant colonies, using microscopy, qPCR, in situ hybridization, genomics and transcriptomics. A novel lineage of Endozoicomonas, proposed here as Candidatus Endozoicomonas endoleachii, was dominant in torpor animals (53-79% read abundance), and potentially occupied specific hemocytes found only in torpid animals. Functional analysis of the metagenome-assembled genome and genome-targeted transcriptomics revealed that Endozoicomonas can use various cellular substrates, like amino acids and sugars, potentially producing biotin and thiamine, but also expressing various features involved in autocatalytic symbiosis. Our study suggests that the microbiome can be linked to the metabolic and physiological states of the host, B. leachii, introducing a model organism for the study of symbioses during drastic physiological changes, such as torpor.

10.
Sci Rep ; 13(1): 9788, 2023 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-37328698

RESUMO

When it comes to aging, some colonial invertebrates present disparate patterns from the customary aging phenomenon in unitary organisms, where a single senescence phenomenon along ontogeny culminates in their inevitable deaths. Here we studied aging processes in 81 colonies of the marine urochordate Botryllus schlosseri each followed from birth to death (over 720 days). The colonies were divided between three life history strategies, each distinct from the others based on the presence/absence of colonial fission: NF (no fission), FA (fission develops after the colony reaches maximal size), and FB (fission develops before the colony reaches maximal size). The study revealed recurring patterns in sexual reproductive statuses (hermaphroditism and male-only settings), colonial vigor, and size. These recurring patterns, collectively referred to as an Orshina, with one or more 'astogenic segments' on the genotype level. The combination of these segments forms the Orshina rhythm. Each Orshina segment lasts about three months (equivalent to 13 blastogenic cycles), and concludes with either the colonial death or rejuvenation, and is manipulated by absence/existing of fission events in NF/FA/FB strategies. These findings indicate that reproduction, life span, death, rejuvenation and fission events are important scheduled biological components in the constructed Orshina rhythm, a novel aging phenomenon.


Assuntos
Urocordados , Animais , Masculino , Urocordados/genética , Rejuvenescimento , Envelhecimento , Reprodução
11.
Sci Rep ; 12(1): 15117, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36068259

RESUMO

Each of the few known life-history strategies (e.g., r/K and parity [semelparity and iteroparity]), is a composite stratagem, signified by co-evolved sets of trade-offs with stochastically distributed variations that do not form novel structured strategies. Tracking the demographic traits of 81 Botryllus schlosseri (a marine urochordate) colonies, from birth to death, we revealed three co-existing novel life-history strategies in this long-standing laboratory-bred population, all are bracketed through colonial fission (termed NF, FA and FB for no fission, fission after and fission before reaching maximal colony size, respectively) and derived from organisms maintained in a benign, highly invariable environment. This environment allows us to capture the strategists' blueprints and their net performance through 13 traits, each branded by high within-strategy variation. Yet, six traits differed significantly among the strategies and, in two, the FB was notably different. These results frame fissions in colonial organisms not as demographic traits, but as pivotal agents for life-history strategies.


Assuntos
Traços de História de Vida , Urocordados , Animais , Demografia
12.
BMC Biol ; 20(1): 167, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35879753

RESUMO

BACKGROUND: Chimeras are genetically mixed entities resulting from the fusion of two or more conspecifics. This phenomenon is widely distributed in nature and documented in a variety of animal and plant phyla. In corals, chimerism initiates at early ontogenic states (larvae to young spat) and results from the fusion between two or more closely settled conspecifics. When compared to genetically homogenous colonies (non-chimeras), the literature has listed ecological and evolutionary benefits for traits at the chimeric state, further positioning coral chimerism as an evolutionary rescue instrument. However, the molecular mechanisms underlying this suggestion remain unknown. RESULTS: To address this question, we developed field monitoring and multi-omics approaches to compare the responses of chimeric and non-chimeric colonies acclimated for 1 year at 10-m depth or exposed to a stressful environmental change (translocation from 10- to 2-m depth for 48h). We showed that chimerism in the stony coral Stylophora pistillata is associated with higher survival over a 1-year period. Transcriptomic analyses showed that chimeras lose transcriptomic plasticity and constitutively express at higher level (frontload) genes responsive to stress. This frontloading may prepare the colony to face at any time environmental stresses which explain its higher robustness. CONCLUSIONS: These results show that chimeras are environmentally robust entities with an enhanced ability to cope with environmental stress. Results further document the potential usefulness of chimeras as a novel reef restoration tool to enhance coral adaptability to environmental change, and confirm that coral chimerism can be an evolutionary rescue instrument.


Assuntos
Antozoários , Aclimatação , Animais , Antozoários/genética , Quimera , Larva/genética , Estresse Fisiológico/genética
13.
Dev Biol ; 490: 22-36, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35809632

RESUMO

Harsh environments enforce the expression of behavioural, morphological, physiological, and reproductive rejoinders, including torpor. Here we study the morphological, cellular, and molecular alterations in torpor architype in the colonial urochordate Botrylloides aff. leachii by employing whole organism Transmission electron (TEM) and light microscope observations, RNA sequencing, real-time polymerase chain reaction (qPCR) quantification of selected genes, and immunolocalization of WNT, SMAD and SOX2 gene expressions. On the morphological level, torpor starts with gradual regression of all zooids and buds which leaves the colony surviving as condensed vasculature remnants that may be 'aroused' to regenerate fully functional colonies upon changes in the environment. Simultaneously, we observed altered distributions of hemolymph cell types. Phagocytes doubled in number, while the number of morula cells declined by half. In addition, two new circulating cell types were observed, multi-nucleated and bacteria-bearing cells. RNA sequencing technology revealed marked differences in gene expression between different organism compartments and states: active zooids and ampullae, and between mid-torpor and naive colonies, or naive and torpid colonies. Gene Ontology term enrichment analyses further showed disparate biological processes. In torpid colonies, we observed overall 233 up regulated genes. These genes included NR4A2, EGR1, MUC5AC, HMCN2 and. Also, 27 transcription factors were upregulated in torpid colonies including ELK1, HDAC3, RBMX, MAZ, STAT1, STAT4 and STAT6. Interestingly, genes involved in developmental processes such as SPIRE1, RHOA, SOX11, WNT5A and SNX18 were also upregulated in torpid colonies. We further validated the dysregulation of 22 genes during torpor by utilizing qPCR. Immunohistochemistry of representative genes from three signaling pathways revealed high expression of these genes in circulated cells along torpor. WNT agonist administration resulted in early arousal from torpor in 80% of the torpid colonies while in active colonies WNT agonist triggered the torpor state. Abovementioned results thus connote unique transcriptome landscapes associated with Botrylloides leachii torpor.


Assuntos
Torpor , Urocordados , Animais , Sequência de Bases , Transdução de Sinais/genética , Torpor/genética , Transcriptoma/genética , Urocordados/fisiologia
15.
Mar Environ Res ; 176: 105612, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35338950

RESUMO

Aggregated larval co-settlement has been documented in myriad marine invertebrate taxa, shaping adult population structures. Still, kinship settlement patterns in brooding corals have not been studied in detail, especially under scenarios of enhanced larval assemblies. Employing two sets of ex-situ experiments, planulae staining for kinship resolution and a computer random settlement simulation, we show that larval settlement of the coral Stylophora pistillata, a brooding species in the Gulf of Aqaba/Eilat, is mostly affected by the number of larval donors, and that larvae tend to aggregate (up to 50% tissue-contacts; distances <3 mm), compared to 3% predicted in a computer simulation, all without a kinship-bias. Field surveys on juvenile colonies revealed a similar clustering pattern. Although aggregated settlement inevitably carries disadvantages such as intraspecific competition, it may be bracketed in adult colonies with benefits such as enhanced fertilization and chimerism-related ecological advantages, including augmented colony size and survivorship. These improved life-history traits of brooding coral species that aggregate could be harnessed as applied ecological engineering tools in reef restoration acts.


Assuntos
Antozoários , Animais , Simulação por Computador , Recifes de Corais , Larva
16.
Biol Rev Camb Philos Soc ; 97(1): 299-325, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34617397

RESUMO

Adult stem cells (ASCs) in vertebrates and model invertebrates (e.g. Drosophila melanogaster) are typically long-lived, lineage-restricted, clonogenic and quiescent cells with somatic descendants and tissue/organ-restricted activities. Such ASCs are mostly rare, morphologically undifferentiated, and undergo asymmetric cell division. Characterized by 'stemness' gene expression, they can regulate tissue/organ homeostasis, repair and regeneration. By contrast, analysis of other animal phyla shows that ASCs emerge at different life stages, present both differentiated and undifferentiated phenotypes, and may possess amoeboid movement. Usually pluri/totipotent, they may express germ-cell markers, but often lack germ-line sequestering, and typically do not reside in discrete niches. ASCs may constitute up to 40% of animal cells, and participate in a range of biological phenomena, from whole-body regeneration, dormancy, and agametic asexual reproduction, to indeterminate growth. They are considered legitimate units of selection. Conceptualizing this divergence, we present an alternative stemness metaphor to the Waddington landscape: the 'wobbling Penrose' landscape. Here, totipotent ASCs adopt ascending/descending courses of an 'Escherian stairwell', in a lifelong totipotency pathway. ASCs may also travel along lower stemness echelons to reach fully differentiated states. However, from any starting state, cells can change their stemness status, underscoring their dynamic cellular potencies. Thus, vertebrate ASCs may reflect just one metazoan ASC archetype.


Assuntos
Células-Tronco Adultas , Drosophila melanogaster , Animais , Diferenciação Celular , Fenótipo
18.
Sci Rep ; 11(1): 22554, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34799589

RESUMO

Chimerism is a coalescence of conspecific genotypes. Although common in nature, fundamental knowledge, such as the spatial distribution of the genotypes within chimeras, is lacking. Hence, we investigated the spatial distribution of conspecific genotypes within the brooding coral Stylophora pistillata, a common species throughout the Indo-Pacific and Red Sea. From eight gravid colonies, we collected planula larvae that settled in aggregates, forming 2-3 partner chimeras. Coral chimeras grew in situ for up to 25 months. Nine chimeras (8 kin, 1 non-related genotypes) were sectioned into 7-17 fragments (6-26 polyps/fragment), and genotyped using eight microsatellite loci. The discrimination power of each microsatellite-locus was evaluated with 330 'artificial chimeras,' made by mixing DNA from three different S. pistillata genotypes in pairwise combinations. In 68% of 'artificial chimeras,' the second genotype was detected if it constituted 5-30% of the chimera. Analyses of S. pistillata chimeras revealed that: (a) chimerism is a long-term state; (b) conspecifics were intermixed (not separate from one another); (c) disproportionate distribution of the conspecifics occurred; (d) cryptic chimerism (chimerism not detected via a given microsatellite) existed, alluding to the underestimation of chimerism in nature. Mixed chimerism may affect ecological/physiological outcomes for a chimera, especially in clonal organisms, and challenges the concept of individuality, affecting our understanding of the unit of selection.


Assuntos
Antozoários/genética , Quimerismo , Repetições de Microssatélites , Animais , Antozoários/crescimento & desenvolvimento , Evolução Molecular , Genótipo
19.
Front Immunol ; 12: 688106, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276677

RESUMO

The scopes related to the interplay between stem cells and the immune system are broad and range from the basic understanding of organism's physiology and ecology to translational studies, further contributing to (eco)toxicology, biotechnology, and medicine as well as regulatory and ethical aspects. Stem cells originate immune cells through hematopoiesis, and the interplay between the two cell types is required in processes like regeneration. In addition, stem and immune cell anomalies directly affect the organism's functions, its ability to cope with environmental changes and, indirectly, its role in ecosystem services. However, stem cells and immune cells continue to be considered parts of two branches of biological research with few interconnections between them. This review aims to bridge these two seemingly disparate disciplines towards much more integrative and transformative approaches with examples deriving mainly from aquatic invertebrates. We discuss the current understanding of cross-disciplinary collaborative and emerging issues, raising novel hypotheses and comments. We also discuss the problems and perspectives of the two disciplines and how to integrate their conceptual frameworks to address basic equations in biology in a new, innovative way.


Assuntos
Organismos Aquáticos/imunologia , Sistema Imunitário/imunologia , Imunidade Inata , Células-Tronco/imunologia , Biologia de Sistemas , Alergia e Imunologia , Organismos Aquáticos/citologia , Organismos Aquáticos/genética , Organismos Aquáticos/metabolismo , Comunicação Celular , Genômica , Sistema Imunitário/citologia , Sistema Imunitário/metabolismo , Biologia Marinha , Transdução de Sinais , Células-Tronco/metabolismo
20.
J Environ Manage ; 291: 112727, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-33957417

RESUMO

Unceasing climate change and anthropogenic impacts on coral reefs worldwide lead the needs for augmenting adaptive potential of corals. Currently, the most successful approach for restoring degraded reefs is 'coral gardening', where corals are farmed in underwater nurseries, then outplanted to damaged reefs. Dealing with enhanced coral adaptation, the 'coral gardening' approach is conceptually structured here within a hierarchical list of five encircling tiers that include all restoration activities, focusing on the nursery phase. Each tier encompasses all the activities performed in the levels below it hierarchically. The first is the 'coral mariculture' tier, followed by the 'ecological engineering' tier. The third is the adaptation-based reef restoration (ABRR) tier, preceding the fourth ('ecosystem seascape') and the fifth ('ecosystem services') tiers. The ABRR tier is further conceptualized and its constituent five classes (phenotypic plasticity, assisted migration, epigenetics, coral chimerism, holobiont modification) are detailed. It is concluded that the nursery phase of the 'gardening' tenet may further serve as a platform to enhance the adaptation capacities of corals to climate change through the five ABBR classes. Employing the 'gardening' tiers in reef restoration without considering ABRR will scarcely be able to meet global targets for healthy reef ecosystems in the future.


Assuntos
Antozoários , Adaptação Fisiológica , Animais , Mudança Climática , Conservação dos Recursos Naturais , Recifes de Corais , Ecossistema , Jardinagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...